Getting started with NXP MCUs: i.MX RT1064

i.MX RT1064 Evaluation Kit (MIMXRT1064-EVK).

The following article explains all necessary steps to create an Embedded Wizard UI application suitable for the i.MX RT1064 Evaluation Kit (MIMXRT1064-EVK) from NXP.

Please follow these instructions carefully and step by step in order to ensure that you will get everything up and running on your target. In case you are not familiar with Embedded Wizard, please read first the chapter basic concepts and the Quick Tour tutorial to understand the principles of Embedded Wizard and the GUI development workflow.

Prerequisites

First, make sure you have all of the following items:

Hardware components

MIMXRT1064-EVK development board from NXP

USB cable to connect the board with your PC

Software components

Embedded Wizard Studio Free or Embedded Wizard Studio Pro

If you want to use the Free edition of Embedded Wizard Studio please register on our website and download the software.

As a customer, please visit the Embedded Wizard Download Center (login/password required) and download Embedded Wizard Studio Pro.

Embedded Wizard Build Environment for IMXRT1064-EVK

To evaluate Embedded Wizard on the mentioned target, you can download the suitable Build Environment from the following link:

IMXRT1064-EVK-BuildEnvironment-V13.01.00.00.zip

As a customer, please visit the Embedded Wizard Download Center (login/password required) and download the latest version of the Build Environment and your licensed Platform Package libraries or source codes.

Optional: NXP MCUXpresso IDE

Optional: IAR Embedded Workbench

Optional: Keil MDK-ARM

IMPORTANT

By default, the new display module RK043FN66HS-CTG is selected. If you are using the older display module RK043FN02H-CT, the configuration has to be changed.

Within the file \TargetSpecific\Drivers\display_support.h you can change the define DEMO_PANEL to the suitable display controller setting.

In case the display module is configured incorrectly, the display will operate with wrong timings and the touch will not work.

Installing Tools and Software

Step 1: Install the latest version of Embedded Wizard Studio.

Step 2: Connect your development board with your PC via USB port J41. Set the mini DIP switches SW7 to OFF - OFF - ON - OFF (QSPI Flash boot mode).

Step 3: Unpack the provided Embedded Wizard Build Environment for IMXRT1064-EVK to your local file system (e.g. C:\NXP\IMXRT1064-EVK). Please make sure to use a short working folder path because MCUXpresso IDE (to be more precise: Eclipse) has restrictions regarding the file path length.

Embedded Wizard GUI Demos

If you just want to run our GUI demos on your MIMXRT1064-EVK development board without building the different examples, you can simply flash the binary file of the Embedded Wizard Master Demo.

The Embedded Wizard Master Demo combines a variety of examples within one huge demo application. It can be used for presentations and showcases. Each demo application can be activated from a common main menu. To return back from a demo application to the main menu, a small home button appears on top of every demo. Additionally, the Master Demo contains an auto-demo mode that presents one demo application after the other. The auto-demo starts automatically and stops as soon as the user touches the screen.

In order to flash the binary file to your target, please follow these steps:

Connect your development board with your PC via USB (make sure to use the USB Debug Link connector) and set the mini DIP switches SW7 to OFF - OFF - ON - OFF (QSPI Flash boot mode).

Execute the batch file FlashMasterDemo.bat that you will find in the subdirectory \MasterDemo within the provided Build Environment. A console window will appear and the flash tool will download the binary file of the Master Demo.

'Master Demo' running on MIMXRT1064-EVK development board.

Exploring the Build Environment

The provided Embedded Wizard build environment for IMXRT1064-EVK contains everything you need to create, compile, link and flash an Embedded Wizard UI application for the MIMXRT1064-EVK target. After unpacking, you will find the following subdirectories and files:

StartGccBuildEnvironment.bat - This script file is provided to start a windows command line to build your GUI applications for the target.

\Application - This folder contains ready-to-use projects to compile and link an Embedded Wizard generated UI application. They are used for all provided examples and they can be used to build your own UI applications.

\FlashDownload - This folder contains a script to load the created binaries into the flash of your target by using the NXP Redlink flash utility.

\GeneratedCode - This folder is used to receive the generated code from an Embedded Wizard UI project. All template projects are building the UI application out of this folder. You can create your own UI project and generate the code into the subdirectory \GeneratedCode without the need to adapt the project.

\Project - This folder contains the prepared projects for GCC (make), IAR Embedded Workbench, Keil MDK-ARM and NXP MCUXpresso IDE.

\Source - This folder contains the files main.c and ewmain.c. There you will find the initialization of the system and the main loop to drive an Embedded Wizard GUI application. The file ewconfig.h contains general configuration settings for the target system, like memory ranges and display parameter and configuration settings for the Embedded Wizard Graphics Engine and Runtime Environment. Additionally, this folder contains a configuration file for FreeRTOS and the device driver C/H files used for the DeviceIntegration example.

\Examples\<ScreenSize> - This folder contains a set of demo applications prepared for a dedicated screen size (480x272 pixel). Each example is stored in a separate folder containing the entire Embedded Wizard UI project. Every project contains the necessary profile settings for the MIMXRT1064-EVK target. The following samples are provided:

\HelloWorld - A very simple project that is useful as starting point and to verify that the entire toolchain, your installation and your board is properly working.

\ColorFormats - This project demonstrates that every UI application can be generated for different color formats: RGBA8888, RGB888, RGB565, Index8 and LumA44.

\ScreenOrientation - This demo shows, that the orientation of the UI application is independent from the physical orientation of the display.

\DeviceIntegration - This example shows the integration of devices into a UI application and addresses typical questions: How to start a certain action on the target? How to get data from a device?

\GraphicsAccelerator - This application demonstrates the graphics performance of the target by using sets of basic drawing operations that are executed permanently and continuously.

\BezierClock - The sample application BezierClock implements a fancy digital clock and timer application with animated digits. The application uses vector graphics to render dynamically the different digits for clock and timer. The change from one digit to another is handled by moving the vector points to get a smooth transition animation.

\BrickGame - The sample application BrickGame implements a classic "paddle and ball" game. In the game, a couple of brick rows are arranged in the upper part of the screen. A ball travels across the screen, bouncing off the top and side walls of the screen. When a brick is hit, the ball bounces away and the brick is destroyed. The player has a movable paddle to bounce the ball upward, keeping it in play.

\ClimateCabinet - The ClimateCabinet demo shows the implementation of a control panel for a climatic exposure test cabinet. The user can define a heating time, a nominal temperature and humidity, a dwell time and the final cooling time.

\Dashboard - The sample application Dashboard shows the implementation of a car dashboard. The application demonstrates the usage of vector graphics created from svg path data and how transitions between two dashboard variants and further UI components can be achieved.

\PaperCutter - This demo shows the implementation of a paper cutting machine, where the user can define the pagination and format of the paper as well as the cutting speed and the amount of papers. The application contains many rect effects and fade-in/fade-out effects to change dynamically the layout of the screen.

\PulseOximeter - The sample application PulseOximeter shows the implementation of a medical device for monitoring a person's pulse frequency and peripheral oxygen saturation. The application demonstrates the usage of vector graphics within graphs and circular gauges.

\SmartThermostat - The SmartThermostat demo application shows the implementation of a fancy, rotatable temperature controller to adjust and display the nominal and actual temperature.

\WashingMachine - This demo shows the implementation of a washing machine with a couple of fancy scrollable list widgets to choose the washing program and parameters. The speciality of this sample application is the magnification effect of the centered list items and the soft fade-in/fade-out effects.

\WaveformGenerator - This WaveformGenerator demo application combines waveforms with different amplitudes and frequencies. The implementation shows the usage of vector graphics to draw a curve based on a list of coordinates.

\MasterDemo - This folder contains the binary file of the Embedded Wizard Master Demo application and a script file to flash the demo on your target. The Master Demo combines a variety of examples within one huge demo application. It can be used for presentations and showcases.

\PlatformPackage - This folder contains the necessary source codes and/or libraries of the iMX_RT Platform Package: Several Graphics Engines for the different color formats (RGBA8888, RGB888, RGB565, Index8 and LumA44) and the Runtime Environment (in the subdirectory \RTE).

\TargetSpecific - This folder contains all configuration files and platform specific source codes. The different ew_bsp_xxx files implement the bridge between the Embedded Wizard UI application and the underlying board support package (NXP hardware drivers) in order to access the display, the serial interface and the clock.

\ThirdParty - This folder contains third-party source codes and tools:

\gcc-arm-none-eabi - This folder contains a subset of the ARM GNU toolchain to compile the examples.

\Make - This folder contains a make tool to build the entire GUI application via command line.

\MCUXpressoIDE - This folder contains the necessary drivers to flash the binaries.

\MCUXpressoSDK - This folder contains the necessary subset of the Software Development Kit (SDK) for MIMXRT1064-EVK used for the Embedded Wizard UI applications (BSP, drivers, FreeRTOS).

Creating the UI Examples

For the first bring up of your system, we recommend to use the example 'HelloWorld':

Example 'HelloWorld' within Embedded Wizard Studio.

The following steps are necessary to generate the source code of this sample application:

Navigate to the directory \Examples\<ScreenSize>\HelloWorld.

Open the project file HelloWorld.ewp with your previously installed Embedded Wizard Studio. The entire project is well documented inline. You can run the UI application within the Prototyper by pressing Ctrl+F5.

To start the code generator, select the menu items BuildBuild this profile - or simply press F8. Embedded Wizard Studio generates now the sources files of the example project into the directory \Application\GeneratedCode.

Compiling, Linking and Flashing

The following steps are necessary to build and flash the Embedded Wizard UI sample application using the GCC ARM embedded toolchain:

Navigate to the top level of the Build Environment.

Open StartGccBuildEnvironment.bat - as a result, a windows command line window should open. In case there are error messages, please edit the file and double-check the path settings.

Now start compiling, linking and flashing:

make make install

If everything works as expected, the application is now executed on your MIMXRT1064-EVK target.

Example 'HelloWorld' running on MIMXRT1064-EVK development board.

All other examples can be created in the same way: Just open the desired example with Embedded Wizard Studio, generate code and rebuild the whole application using simply:

make install

Creating your own UI Applications

In order to create your own UI project suitable for the MIMXRT1064-EVK target, you can create a new project and select the IMXRT1064-EVK project template:

As a result you get a new Embedded Wizard project, that contains the necessary Profile attributes suitable for the MIMXRT1064-EVK development board:

The following profile settings are important for your target:

The attribute PlatformPackage should refer to the iMX_RT Platform Package.

The attribute ScreenSize should correspond to the display size of the MIMXRT1064-EVK development board.

The attributes ModeOfBitmapResources and ModeOfStringConstants can be set to DirectAccess in case that the resources should be taken directly from flash memory. By default these attributes are set to Compressed.

IMPORTANT

The usage of DirectAccess for bitmap resources should be considered carefully! Typically the data rate of flash memory (ROM) is much slower compared to data memory (RAM) - as a result the graphics performance may decrease significantly. Please see also the additional remarks in the section custom specific hardware.

The attribute OutputDirectory should refer to the \Application\GeneratedCode directory within your Build Environment. By using this template, it will be very easy to build the UI project for your target.

The attribute CleanOutputDirectories should be set to true to ensure that unused source code within the output directory \Application\GeneratedCode will be deleted.

The attribute PostProcess should refer to \Application\Project\EWARM\EWARM_ew_post_process.cmd if you are working with IAR Embedded Workbench or to \Application\Project\MDK-ARM\MDK-ARM_ew_post_process.cmd if you are working with Keil MDK-ARM or to \Application\Project\MCUXpresso\IMXRT1064-EVK\MCUXpresso_ew_post_process.cmd if you are working with the NXP MCUXpresso IDE. In case of the GCC ARM embedded toolchain leave it blank

Now you can use the template project in the same manner as it was used for the provided examples to compile, link and flash the binary.

After generating code, please follow these steps, in order to build your own UI application:

Start the batch file 'StartGccBuildEnvironment.bat'. Again, a windows command line window should open.

Start compiling, linking and flashing:

make install

Most of the project settings are taken directly out of the generated code, like the color format or the screen orientation. Only a few additional settings can be configured directly within the Makefile, like the usage of the FreeRTOS operating system. All other settings can be made directly within the file ewconfig.h, which contains general configuration settings for the target system.

Console output

In order to receive error messages or to display simple debug or trace messages from your Embedded Wizard UI application, a serial terminal like 'Putty' or 'TeraTerm' should be used.

As soon as you connect your MIMXRT1064-EVK target with the PC via USB, a new virtual Com Port appears within your system device list. Open the device manager to get the port number of this COM port.

Now you can open your terminal application and connect it via COMx with the following settings: 115200-8-N-1

This terminal connection can be used for all trace statements from your Embedded Wizard UI applications or for all debug messages from your C code.

Using IAR Embedded Workbench

If you want to use the IAR Embedded Workbench instead of the GCC ARM embedded toolchain, please follow these instructions:

The subdirectory \Application\Project\EWARM contains a template project that is commonly used for all provided Embedded Wizard examples. All Embedded Wizard examples will store the generated code within the common /Application/GeneratedCode folder.

The generated code of an Embedded Wizard example is imported automatically to the IAR Embedded Workbench project using the Project Connection mechanism.

To establish this automatic project import a post process has to be added to the Profile settings within Embedded Wizard Studio:

Open the desired Embedded Wizard example project.

Select the Profile and set the attribute PostProcess to the file ..\..\Application\Project\EWARM\EWARM_ew_post_process.cmd.

After the Embedded Wizard code generation the installed post process will generate a ewfiles.ipcf file, that controls the import to the IAR Embedded Workbench project.

After returning to IAR Embedded Workbench, the latest generated code and the suitable Embedded Wizard Platform Package will be imported to the IAR Embedded Workbench project (depending on the color format and the screen orientation selected in the Embedded Wizard Profile).

If the color format or the screen orientation was changed, please do a complete rebuild of the IAR Embedded Workbench project.

Using Keil MDK-ARM

If you want to use the Keil MDK-ARM toolchain instead of the GCC ARM embedded toolchain, please follow these instructions:

The subdirectory \Application\Project\MDK-ARM contains a template project that is commonly used for all provided Embedded Wizard examples. All Embedded Wizard examples will store the generated code within the common /Application/GeneratedCode folder.

The generated code of an Embedded Wizard example is imported automatically to the Keil MDK-ARM project using the CMSIS PACK mechanism.

The following steps are needed to establish this automatic project import:

Install Tara.Embedded_Wizard_Launcher.x.x.x.pack by double clicking. You will find the file within the subdirectory \Application\Project\MDK-ARM.

Open the desired Embedded Wizard example project.

Select the Profile and set the attribute PostProcess to the file ..\..\Application\Project\MDK-ARM\MDK-ARM_ew_post_process.cmd.

After the Embedded Wizard code generation the installed post process will generate a ewfiles.gpdsc file, that controls the Keil MDK-ARM project import.

In Keil MDK-ARM a dialog appears: "For the current project new generated code is available for import". After confirmation, the latest generated code and the suitable Embedded Wizard Platform Package will be imported to the Keil MDK-ARM project (depending on the color format and the screen orientation selected in the Embedded Wizard Profile).

If the color format or the screen orientation was changed, please do a complete rebuild of the Keil MDK-ARM project.

Using NXP MCUXpresso IDE

If you want to use the NXP MCUXpresso IDE instead of the GCC ARM embedded toolchain, please follow these instructions:

The subdirectory \Application\Project\MCUXpresso contains a template project that is commonly used for all provided Embedded Wizard examples. All Embedded Wizard examples will store the generated code within the common /Application/GeneratedCode folder.

The following steps are needed to establish this automatic project import:

Open the desired Embedded Wizard example project.

Select the Profile and set the attribute PostProcess to the file ..\..\Application\Project\MCUXpresso\IMXRT1064-EVK\MCUXpresso_ew_post_process.cmd.

After the Embedded Wizard code generation the installed post process will adapt the .cproject XML file. All necessary libraries and include paths (depending on the color format and screen rotation) will be set automatically.

The given MCUXpresso example under \Application\MCUXpresso contains a workspace which has all adaptions for an Embedded Wizard project. For using this within NXP MCUXpresso IDE do following steps:

Open NXP MCUXpresso IDE and select the directory \Application\Project\MCUXpresso as workspace directory.

To import the C project, select the menu item FileImport and choose General - Existing Projects into Workspace and press Next.

Choose Select root directory - Browse and select the directory \Application\Project\MCUXpresso\IMXRT1064-EVK.

Press Finish.

To compile the project select ProjectBuild Project.

Choose the GUI Flash Tool for running the application on the target or use the build in debug function for debugging the application on your target. The GUI Flash Tool can be executed by pressing the blue chip button from the menu bar.

If the color format or the screen orientation was changed, please do a clean in NXP MCUXpresso IDE.

Custom specific hardware

In order to bring-up an Embedded Wizard generated UI application on your i.MX RT1064 custom hardware, you can use the provided Embedded Wizard Build Environment for MIMXRT1064-EVK development board as a template. The file ewconfig.h contains target specific settings that have to be adjusted to your particular hardware. Furthermore, the subdirectory \TargetSpecific contains all the platform specific source codes. Assuming that your custom hardware is similar to the MIMXRT1064-EVK development board, the following adaptations or configurations are typically necessary:

System clock (ew_bsp_system.c) - The first and the important step is to configure the system and peripheral clock. Depending on your hardware you can use the internal or external clock as source. Please take care that your USART and I2C are connected to the selected clock source and configured correctly. The Embedded Wizard UI application runs independent from the chosen system frequency, however, with a slow system clock, all components need more time for their tasks (e.g. display refresh).

SDRAM (ew_bsp_system.c) - The SDRAM configuration has to be adapted to your particular SDRAM. Please use a memory test to ensure that writing and reading works properly. If the start address and/or the size of the SDRAM has changed, please adapt the settings for the framebuffer and the memory pool within the file ewconfig.h.

MPU (ew_bsp_system.c) - Please take care to configure the MPU properly in order to avoid unexpected speculative read accesses outside of valid memory regions.

USART (ew_bsp_console.c) - Typically, the USART configuration just requires a new pinout according your hardware layout. The usage of the serial connection is highly recommended in order to get status and debug messages during runtime. In case of using a NXP BSP it is possible to use the preconfigured debug console.

eLCDIF (ew_bsp_display.c) - The eLCDIF is an integrate display controller which allows you to connect many different display types to a NXP device. Here you have to adjust the interface to your display. It is important to adjust, polarity, timings, color format and layer settings according your dedicated display.

Pinout (Drivers/pin_mux.c) - To configure the pinout of your custom hardware you need adapt the pin routing. All the information how the UI relevant hardware is connected to your MCU is configured centrally in one file.

Touch (ew_bsp_touch.c) - If your application requires touch support, you can integrate a given touch driver provided by the touch controller manufacturer or write your own. As a result the current touch position should be returned.

As soon as these steps are done, you can create your own GUI application or use one of the provided examples. If the size of your display is different compared to the display of the MIMXRT1064-EVK development board (480x272 pixel), please adapt the attribute ScreenSize of the UI project and the size of the framebuffer within the file ewconfig.h accordingly.

IMPORTANT

The usage of DirectAccess for bitmap resources should be considered carefully! Typically the data rate of flash memory (ROM) is much slower compared to data memory (RAM) - as a result the graphics performance may decrease significantly.

In case you get some flicker effects on your LCD you can increase the read priority of the LCDIF in order to avoid buffer underflows. Please have a look into the file ew_bsp_display.c and adapt the settings within the function EwBspDisplayInit().

In case that the PXP does not get enough data from the flash memory and the graphics performance is not sufficient, you can share the prefetch buffer of the FlexSPI between core and PXP. Please have a look into the file ew_bsp_system.c and adapt the settings within the function EwBspSystemInit().

Alternatively, you can try to disable the PXP by setting the macro EW_USE_GRAPHICS_ACCELERATOR to 0 within the configuration file ewconfig.h - as a result only the CPU will make read accesses to the Flash memory.

In case you want to change the operating system, please adapt the all functions within the file ew_bsp_os.c to your particular operating system. Furthermore, adapt the makefile/projectfile accordingly.

Release notes

The following section contains the version history of the Build Environment (including Graphics Engine and Runtime Environment) for IMXRT1064-EVK. These release notes describe only the platform specific aspects - for all general improvements and enhancements please see the Embedded Wizard release notes.

Version 13.00.00.00

Support of new display module RK043FN66HS-CTG with GT911 touch driver.

The new file /TargetSpecific/Drivers/display_support.h is used to select the current display type (DEMO_PANEL_RK043FN02H or DEMO_PANEL_RK043FN66HS). The new display module RK043FN66HS-CTG is set as default value.

Using Graphics Engine (GFX) and Runtime Environment (RTE) V13.00.

Using MCUXpresso SDK V2.14.0.

Using Arm GNU Toolchain V11.2-2022.02.

Using IAR Embedded Workbench 9.40.2, IAR C/C++ Compiler V9.40.2.374/W64 for ARM.

Using Keil MDK-ARM Professional Version 5.38.0.0, ARM Compiler 6.19 (armclang).

Using MCUXpresso IDE V11.8.0 Build 1165.

Version 13.01.00.00

Using Graphics Engine (GFX) and Runtime Environment (RTE) V13.01.

Bug-fix: Crash with Shadow view displayed with rounded corners on target systems configured for screen orientation 90 or 270 degree.

Bug-fix: Crash with Filled Path and Stroked Path views configured to buffer the rasterized image on target systems configured for screen orientation 90 or 270 degree.

Bug-fix: Crash with Filled Path Bitmap and Stroked Path Bitmap on target systems configured for screen orientation 90 or 270 degree.