Getting started with NXP: LPCXpresso54608

LPCXpresso54608 development board.

The following article explains all necessary steps to create an Embedded Wizard UI application suitable for the LPCXpresso54608 development board. Please follow these instructions carefully and step by step in order to ensure that you will get everything up and running on your target. In case you are not familiar with Embedded Wizard, please read first the Quick Tour tutorial to understand the principles of Embedded Wizard and the GUI development workflow.

Prerequisites

First of all, you need the following hardware components:

LPCXpresso54608 development board from NXP

USB cable to connect the board with your PC

Make sure that you have got the following software packages:

Embedded Wizard Studio Free or Embedded Wizard Studio Pro

Embedded Wizard NxpLpc Platform Package

Embedded Wizard Build Environment for LPCXpresso54608

TIP

If you want to use the Free edition of Embedded Wizard Studio and the NxpLpc Platform Package, please register on our website and select the target LPCXpresso54608. Then you can download the above software packages.

All customers who licensed Embedded Wizard can visit our download center to get the above software packages.

Installing Tools and Software

Step 1: Install the latest version of Embedded Wizard Studio.

Step 2: Install the Embedded Wizard NxpLpc Platform Package.

Step 3: Connect your development board with your PC via USB (make sure to use the USB Debug Link connector) and remove jumper JP5 from the board. Otherwise flashing your software is not possible.

Step 4: Unpack the provided Embedded Wizard Build Environment for LPCXpresso54608 to your local file system (e.g. C:\NXP\LPCXpresso54608).

Embedded Wizard GUI Demos

If you just want to run our GUI demos on your LPCXpresso54608 development board without building the different examples, you can simply flash the binary file of the Embedded Wizard Master Demo.

The Embedded Wizard Master Demo combines a variety of examples within one huge demo application. It can be used for presentations and showcases. Each demo application can be activated from a common main menu. To return back from a demo application to the main menu, a small home button appears on top of every demo. Additionally, the Master Demo contains an auto-demo mode that presents one demo application after the other. The auto-demo starts automatically and stops as soon as the user touches the screen.

In order to flash the binary file to your target, please follow these steps:

Connect your development board with your PC via USB (make sure to use the USB Debug Link connector) and remove jumper JP5 from the board. Otherwise flashing your software is not possible.

Execute the batch file FlashMasterDemo.bat that you will find in the subdirectory \MasterDemo. A console window will appear and the flash tool will download the binary file of the Master Demo.

'Master Demo' running on LPCXpresso54608 development board.

Exploring the Build Environment

The provided Embedded Wizard build environment for LPCXpresso54608 contains everything you need to create, compile, link and flash an Embedded Wizard UI application for the LPCXpresso54608 target. After unpacking, you will find the following subdirectories and files:

StartGccBuildEnvironment.bat - This script file is provided to start a windows command line to build your GUI applications for the target.

\Application - This folder contains ready-to-use projects to compile and link an Embedded Wizard generated UI application. They are used for all provided examples and they can be used to build your own UI applications.

\GeneratedCode - This folder is used to receive the generated code from an Embedded Wizard UI project. All template projects are building the UI application out of this folder. You can create your own UI project and generate the code into the subdirectory \GeneratedCode without the need to adapt the project.

\Project - This folder contains the prepared projects for GCC (make) and NXP MCUXpresso.

\Source - This folder contains the files main.c and ewmain.c. There you will find the initialization of the system and the main loop to drive an Embedded Wizard GUI application. Additionally, this folder contains a configuration file for FreeRTOS and the device driver C/H files used for the DeviceIntegration example.

\Examples - This folder contains a set of demo applications. Each example is stored in a separate folder containing the entire Embedded Wizard UI project. Every project contains the necessary profile settings for the LPCXpresso54608 target. The following samples are provided:

\HelloWorld - A very simple project that is useful as starting point and to verify that the entire toolchain, your installation and your board is properly working.

\ColorFormats - This project demonstrates that every UI application can be generated for different color formats: RGBA8888, RGB565, Index8 and LumA44.

\ScreenOrientation - This demo shows, that the orientation of the UI application is independent from the physical orientation of the display.

\DeviceIntegration - This example shows the integration of devices into a UI application and addresses typical questions: How to start a certain action on the target? How to get data from a device?

\GraphicsAccelerator - This application demonstrates the graphics performance of the target by using sets of basic drawing operations that are executed permanently and continuously.

\BezierClock - The sample application BezierClock implements a fancy digital clock and timer application with animated digits. The application uses vector graphics to render dynamically the different digits for clock and timer. The change from one digit to another is handled by moving the vector points to get a smooth transition animation.

\BrickGame - The sample application BrickGame implements a classic "paddle and ball" game. In the game, a couple of brick rows are arranged in the upper part of the screen. A ball travels across the screen, bouncing off the top and side walls of the screen. When a brick is hit, the ball bounces away and the brick is destroyed. The player has a movable paddle to bounce the ball upward, keeping it in play.

\ClimateCabinet - The ClimateCabinet demo shows the implementation of a control panel for a climatic exposure test cabinet. The user can define a heating time, a nominal temperature and humidity, a dwell time and the final cooling time.

\PaperCutter - This demo shows the implementation of a paper cutting machine, where the user can define the pagination and format of the paper as well as the cutting speed and the amount of papers. The application contains many rect effects and fade-in/fade-out effects to change dynamically the layout of the screen.

\WashingMachine - This demo shows the implementation of a washing machine with a couple of fancy scrollable list widgets to choose the washing program and parameters. The speciality of this sample application is the magnification effect of the centered list items and the soft fade-in/fade-out effects.

\WaveformGenerator - This WaveformGenerator demo application combines waveforms with different amplitudes and frequencies. The implementation shows the usage of the class Charts::Graph to paint a list of coordinates.

\MasterDemo - This folder contains the binary file of the Embedded Wizard Master Demo application and a script file to flash the demo on your target. The Master Demo combines a variety of examples within one huge demo application. It can be used for presentations and showcases.

\PlatformPackage - This folder contains the necessary source codes and/or libraries of the NxpLpc Platform Package: Several Graphics Engines for the different color formats (RGBA8888, RGB565, Index8 and LumA44) and the Runtime Environment (in the subdirectory \RTE).

\TargetSpecific - This folder contains all configuration files and platform specific source codes. The different ew_bsp_xxx files implement the bridge between the Embedded Wizard UI application and the underlying board support package (NXP hardware drivers) in order to access the display, the serial interface and the clock.

\ThirdParty - This folder contains third-party source codes and tools:

\gcc-arm-none-eabi - This folder contains a subset of the GCC ARM embedded toolchain to compile the examples.

\Make - This folder contains a make tool to build the entire GUI application via command line.

\MCUXpressoIDE - This folder contains the necessary drivers to flash the binaries.

\MCUXpressoSDK - This folder contains the necessary subset of the Software Development Kit (SDK) for LPCXpresso54608 used for the Embedded Wizard UI applications (BSP, drivers, FreeRTOS).

\TLSF - This folder contains the memory manager used for the Embedded Wizard UI applications.

Creating the UI Examples

For the first bring up of your system, we recommend to use the example 'HelloWorld':

Example 'HelloWorld' within Embedded Wizard Studio.

The following steps are necessary to generate the source code of this sample application:

Navigate to the directory \Example\HelloWorld.

Open the project file HelloWorld.ewp with your previously installed Embedded Wizard Studio. The entire project is well documented inline. You can run the UI application within the Prototyper by pressing Ctrl+F5.

To start the code generator, select the menu items BuildBuild this profile - or simply press F8. Embedded Wizard Studio generates now the sources files of the example project into the directory \Application\GeneratedCode.

Compiling, Linking and Flashing

The following steps are necessary to build and flash the Embedded Wizard UI sample application using the GCC ARM embedded toolchain:

Navigate to the top level of the Build Environment.

Open StartGccBuildEnvironment.bat - as a result, a windows command line window should open. In case there are error messages, please edit the file and double-check the path settings.

Now start compiling, linking and flashing:

make
make install

If everything works as expected, the application is now executed on your LPCXpresso54608 target.

Example 'HelloWorld' running on LPCXpresso54608 development board.

All other examples can be created in the same way: Just open the desired example with Embedded Wizard Studio, generate code and rebuild the whole application using simply:

make install

Creating your own UI Applications

In order to create your own UI project suitable for the LPCXpresso54608 target, you can create a new project and select the LPCXpresso54608 project template:

As a result you get a new Embedded Wizard project, that contains the necessary Profile attributes suitable for the LPCXpresso54608 development board:

The following profile settings are important for your target:

The attribute PlatformPackage should refer to an installed NxpLpc Platform Package.

The attribute ScreenSize should correspond to the display size of the LPCXpresso54608 development board.

The attributes FormatOfBitmapResources and FormatOfStringConstants can be set to DirectAccess in case that the resources should be taken directly from flash memory. By default these attributes are set to Compressed.

The attribute OutputDirectory should refer to the \Application\GeneratedCode directory within your Build Environment. By using this template, it will be very easy to build the UI project for your target.

The attribute CleanOutputDirectories should be set to true to ensure that unused source code within the output directory \Application\GeneratedCode will be deleted.

The attribute PostProcess should refer to \Application\Project\MCUXpresso\LPCXpresso54608\MCUXpresso_ew_post_process.cmd if you are working with the NXP MCUXpresso IDE. In case of the GCC ARM embedded toolchain leave it blank

Now you can use the template project in the same manner as it was used for the provided examples to compile, link and flash the binary.

After generating code, please follow these steps, in order to build your own UI application:

Start the batch file 'StartGccBuildEnvironment.bat'. Again, a windows command line window should open.

Start compiling, linking and flashing:

make install

Most of the project settings are taken directly out of the generated code, like the color format or the screen orientation. Only a few additional settings can be configured directly within the Makefile, like the usage of an external flash memory or the usage of the FreeRTOS operating system.

Console output

In order to receive error messages or to display simple debug or trace messages from your Embedded Wizard UI application, a serial terminal like 'Putty' or 'TeraTerm' should be used.

As soon as you connect your LPCXpresso54608 target with the PC via USB, a LPC-LinkII UCom Port (COMx) appears within your system device list. Open the device manager to get the number of the installed COM port.

Now you can open your terminal application and connect it via COMx with the following settings: 115200-8-N-1

This terminal connection can be used for all trace statements from your Embedded Wizard UI applications or for all debug messages from your C code.

Using NXP MCUXpresso IDE

If you want to use the NXP MCUXpresso IDE instead of the GCC ARM embedded toolchain, please follow these instructions:

The subdirectory \Application\Project\MCUXpresso contains a template project that is commonly used for all provided Embedded Wizard examples. All Embedded Wizard examples will store the generated code within the common /Application/GeneratedCode folder.

The following steps are needed to establish this automatic project import:

Open the desired Embedded Wizard example project.

Select the Profile and set the attribute PostProcess to the file ..\..\Application\Project\MCUXpresso\ LPCXpresso54608\MCUXpresso_ew_post_process.cmd.

After the Embedded Wizard code generation the installed post process will adapt the .cproject XML file. All necessary libraries and include paths (depending on the color format and screen rotation) will be set automatically.

TIP

Please note, that MCUXpresso always needs the associated SDK package for your controller. Therefore please download the SDK from the NXP homepage and install the SDK via drag and drop to the window 'Installed SDKs' inside the MCUXpresso.

The given MCUXpresso example under \Application\MCUXpresso contains a workspace which has all adaptions for an Embedded Wizard project. For using this within NXP MCUXpresso IDE do following steps:

Open NXP MCUXpresso IDE and select the directory \Application\Project\MCUXpresso as workspace directory.

To import the C project, select the menu item FileImport and choose General - Existing Projects into Workspace and press Next.

Choose Select root directory - Browse and select the directory \Application\Project\MCUXpresso\LPCXpresso54608.

Press Finish.

To compile the project select ProjectBuild Project.

Choose the GUI Flash Tool for running the application on the target or use the build in debug function for debugging the application on your target.

If the color format or the screen orientation was changed, please do a clean in NXP MCUXpresso IDE.

Custom specific hardware

In order to bring-up an Embedded Wizard generated UI application on your LPC54608 custom hardware, you can use the provided Embedded Wizard Build Environment for LPCXpresso54608 development board as a template. The subdirectory \TargetSpecific contains all configuration files and platform specific source codes. Assuming that your custom hardware is similar to the LPCXpresso54608 development board, the following adaptations or configurations are typically necessary:

System clock (ew_bsp_system.c) - The first and the important step is to configure the system and peripheral clock. Depending on your hardware you can use the internal or external clock as source. Please take care that your USART and I2C are connected to the selected clock source and configured correctly. The Embedded Wizard UI application runs independent from the chosen system frequency, however, with a slow system clock, all components need more time for their tasks (e.g. display refresh).

SDRAM (ew_bsp_system.c) - The SDRAM configuration has to be adapted to your particular SDRAM. Please use a memory test to ensure that writing and reading works properly. If the start address and/or the size of the SDRAM has changed, please adapt the settings for the framebuffer and the memory pool within the file ewmain.c.

USART (ew_bsp_serial.c) - Typically, the USART configuration just requires a new pinout according your hardware layout. The usage of the serial connection is highly recommended in order to get status and debug messages during runtime. In case of using a NXP BSP it is possible to use the preconfigured debug console.

LCDC (ew_bsp_display.c) - The LCDC is an integrate display controller which allows you to connect many different display types to a NXP device. Here you have to adjust the interface to your display. It is important to adjust your polarity, timings, color format and layer settings according your dedicated display.

Pinout (Drivers/pin_mux.c) - To configure the pinout of your custom hardware you need adapt the pin routing. All the information how the UI relevant hardware is connected to your MCU is configured centrally in one file.

Touch (ew_bsp_touch.c) - If your application requires touch support, you can integrate a given touch driver provided by the touch controller manufacturer or write your own. As a result the current touch position should be returned.

As soon as these steps are done, you can create your own GUI application or use one of the provided examples. If the size of your display is different compared to the display of the LPCXpresso54608 development board (480x272 pixel), please adapt the attribute ScreenSize of the UI project and the size of the framebuffer within the file ewmain.c accordingly.